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NOMENCLATURE

a = Inner radius of a thick-walled cylinder

b = Outer radius of a thick-walled cylinder

R = The distance from a singular point

W = Wall ratio = b/a

p = The radius of the elastic-plastic interface
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INTRODUCTION

The autofrettage process has been known for many years and has been used as

an example of an elastic-plastic problem in countless books and colleae lectures

in plasticity. In the conventional picture a thick-walled cylinder of inner

radius a and outer radius b is assumed to have elastic-perfectly plastic

material properties. Internal pressure is applied until the elastic-plastic

interface is at some radius o. The problem is viewed from a cross section with

either plane-strain or, more commonly, plane-stress end conditions. In this

solution the cylinder geometry can be reduced to the single nondimensional

parameter wall ratio W = a/b. The position of the elastic-olastic interface is

often described in terms of the percent overstrain or the position of the inter-

face as a percent of the wall thickness. Weigle (1,2) combined these assump-

tions with Mises' yield criterion on the basic theory. Davidson et al. (3)

further expanded this work as a basis to analyze this problem.

The simple facts are that in manufacturing practice the use of high

pressures to carry out the autofrettaqe process is complex, slow, expensive, and

dangerous. This is because the maximum pressures are in the ranqe of 1000 to

2000 MPa, and at the autofrettage pressure, the cylinders are close to failure.

The swage process was developed by Davidson et al. (4) as a way to overcome

these problems and has been in use for over 25 years. The basic geometry is

shown in longitudinal section in Figure 1. Here a solid tungsten carbide

mandrel is forced through a carefully prepared tube using a solid steel ram.

The interference between the mandrel and the tube is generally about 2.5 per-

cent and produces residual stresses nearly the same as the calculated values.

This problem does not yield to the classic theory of elasticity methods because

of its complex nature as a three-bodv problem with two separate contact



surfaces. This condition is further complicated by the fact that one of the

contact surfaces moves along the length of the tube experiencing different con-

ditions at the start and at the end of the ram stroke.

The advanced nonlinear finite element codes, such as ABAQUS (ref 5), are

well-suited to this type of problem. In this type of analysis the global

equations of elasticity are replaced by local element shape functions, and the

nonlinear effects are handled by solving the problem in many small linear incre-

ments on high-performance computers. Under these conditions, the solution seems

to improve as many small practical details are added and as the analysis more

closely mirrors the actual geometry, material, constraint, and loading con-

ditions. In this study there are two primary simplifying assumptions: first is

that the behavior is symmetric about the tube center line (axisvmmetric

elements), and second is that the material properties can be represented by a

bilinear stress-strain curve with kinematic strain-hardening.

The full swage autofrettage process had been well-defined and was beinq

used as a routine production process for several years before the analytical

tools became available for the problem. The first key tool was the ABAQUS code

which was quickly demonstrated to be a reliable and powerful nonlinear finite

element code. Next, there was a need for a computer with sufficient power to

solve a reasonable size mesh. The installation of a CONVEX C-220 completed the

required 'tool kit' for the swage problem. The final motivation was the

necessity to test the CONVEX computer with a problem having a long solution

time. This preliminary solution of the full swage autofrettage problem required

over 15 hours of computer time to complete. The time was well worth the effort

as a computer system test and it yielded interesting technical results as well.
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ANALYSIS DETAILS

The following is essentially a list of the analysis details necessary to

closely model the swage process for a section of a 105-mm cannon tube that had a

length of four bore diameters (0.405 m) and was modeled as a steel with a yield

strength of 1195 MPa. The analysis starts with the mandrel being placed in the

bore of the tube at the end nearest the axial restraint and it ends when the

mandrel has cleared the tube and the tube is in the fullv-developed residual

stress condition. It is this residual stress condition that is the primary

result of the analysis and will be plotted from a single section at midpoint in

tube length. While the details of the process are fascinatinq in themselves,

they are not the object of the current study.

The first body in the analysis chain is the solid steel ram which is used

to push the mandrel through the tube. Here the ram is truncated to a length

one-half the ram diameter and is moved through the tube by a moving constraint

at the free end. This is the only applied load and its actual value is deter-

mined by the friction and wedging action between the tube and mandrel. This

component interacts with the mandrel at a simple interface with a coefficient of

friction of 0.05. The exact value of friction probably has little effect

because of the low relative sliding on this interface. The interaction at the

ram-mandrel interface was previously studied in a design analysis of swage

mandrels (refs 6,7).

The mandrel is essentially a short tungsten carbide cylinder with a 1.5-

degree taper over most of its length. There is a short (0.0063 m) constant

diameter flat near the rear (ram) end followed by a 3-degree relief taper at the

back. This component interacts with both the ram and the tube and has an

interesting feature at the end of the ram travel. The analysis is interrupted

about 0.075 m from the end of the ram stroke to add a second moving constraint
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at the front of the mandrel. This constraint controls the forceful ejection of

the mandrel from the tube, as a result of the interaction with the 3-degree rear

taper. This procedure keeps the analysis a static solution and eliminates the

need for inertial terms.

The interface between the mandrel and the tube is a critical portion of the

model because it is the location of the moving contact surface. Here the inter-

face is modeled as a 'softened contact'. In this model the interface pressure

becomes an exponential function of the gap between the two bodies. Contact

starts at a numerical gap of 2.7x10- 6 and reaches a value of 17.2 MPa at zero

gap. This process makes the numeric solution more stable and may mimic the nor-

mal compliance of real surfaces. A coefficient of friction of 0.015 was used to

model this surface which was lubricated by a sterate-based high pressure lubri-

cant held in place by a porous phosphate coating.

The tube section used was a plane cylinder with a wall ratio W = 2.257 and

modeled the rear portion of a 105-mm cannon tube. The tube material was a steel

with a yield strength of 1195 MPa which strain-hardened to 1332 MPa at a olastic

strain of 0.0368. The cylinder had three geometry details which were reflected

in actual practice. First, it was restrained at a single point on the outer

diameter (OD) to prevent axial movement. Actual tubes are held by a single

groove in the OD. Second, the bore had a short (1.5-degree) taper to help the

initial placement )f the mandrel (also true in shoo practice). Third, a small

relief was placed on the exit end of the tube to ease the mandrel out of the

cylinder. This took the form of a 0.00066-m increase in bore radius over the

last 0.013 m of length.

The model was generated for the ABAQUS code using eight-node axisymmetric

elements (CAX8). The geometry of the elements was modified at the point of
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axial restraint to properly model the 1,'R singular stress field generated by

this point load. The contact surfaces were both modeled as slide lines with the

appropriate friction. The slide line on the bore covered all 64 elements on the

bore. These 64 bore elements were reduced to 32 at the 00 of the cylinder,

resulting in 306 elements for the cylinder model, 56 elements for the mandrel,

and 16 for the ram. The solution was quasi-static where time was used as a

device to control the moving contact. In the final solution, a total of 560

time increments were used for the complete mandrel movement.

RESULTS

The first result was the residual stress distribution calculated from a

conventional theoretical solution for 83 percent overstrain. This solution is

shown in Figure 2 and represents the conventional picture of stress for this

problem. In order to provide a good comparison, the 83 percent overstrain value

was taken from the contour plots generated by this finite element solution.

Note that the axial stress was assumed to be zero (plane-stress).

The first finite element results became available during the 15-hour solu-

tion time as the intermediate data were calculated. These show a rapid build-uo

of stresses ahead of the mandrel and the development of residuals behind the

contact surface. These contour plots were reduced to a single typical ccntour

plot of Mises' equivalent stress in Figure 3. This figure shows a large irregu-

lar 'bubble' of plastic tube material next to the contact surface.

The contact surface stresses are shown in Figure 4 as a function of axial

position. The mandrel shape is shown along with the contact stress at two dif-

9 ferent mandrel positions: time increments 200 and 300. This allows the reader
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to relate the stress values to the position of the flat at the maximum mandrel

diameter. The plot is consistent at each mandrel position but is rather jagged

because the elements are rather large relative to the contact surface length.

The entire contact surface length is only 5 elements long with the flat repre-

sented by a single mandrel element.

Figure 5 shows the residual stress versus radius data produced by this

finite element solution. It corresponds to the stresses shown in Figure 2 for

conventional equations. While the values at the inner diameter (ID) and 00 seem

to show reasonable agreement, the shape of the curves within the cylinder wall

are rather different. Furthermore, the axial stfess curve is not predicted by

the conventional equations.

DISCUSSION

The most striking difference between this solution and the conventional

hydraulic autofrettage solution is the very high interface pressure on the short

contact surface. The same effect was predicted by this author in an earlier

work on swage mandrels (7). This analysis method duplicates the mandrel analy-

sis as a small part of the more general work. However, in this case the oroper

loading condition on the mandrel is also part of the solution.

This solution was difficult because the contact surface moves along the

length of the tube producing residual stresses as a continuous process. The

primary effects of this process exist only on a small portion of the tube at any

one point in time. It is difficult to assume that this is equivalent to the

hydraulic autofrettage process in which the entire tube is loaded at the same

time. Unfortunately, the state-of-the-art in computation made this assumption

necessary, if any engineering progress were to be made.
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Any calculated stress distribution is open to doubt until it has been

verified by experiment. In this case, the experiments have been difficult,

expensive, and infrequent. The early work of Davidson (8) using the Sachs

method and Clark (9) using X-ray diffraction both yielded data which are dif-

ficult to interpret. Both of these papers also used swage mandrels which were

of a different design than those in current use. Current work in residual

stress measurement yields encouraging results that will be published in a future

report.

CONCLUSION

The use of the ABAQUS finite element code has been demonstrated for the

full swage autofrettage problem. This opens the possibility of using this

method of analysis for future problems. Furthermore, some of the results show

residual stress effects which are not predicted by conventional analysis. These

effects have been produced by modeling the process geometry, including the

'moving contact surface' effect.
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